Mechanisms of water infiltration into conical hydrophobic nanopores.
نویسندگان
چکیده
Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement.
منابع مشابه
Ion repelling effect of nanopores in a hydrophobic zeolite
By measuring the ion concentration in a pressure-induced infiltration experiment on a hydrophobic Zeolite Socony Mobil-5, it is found that the nanopore wall has a strong ion repelling effect. When the initial ion concentration is relatively low, only water molecules can enter the nanopores. Once the initial ion concentration is relatively high, ions can infiltrate into the nanopores, but the ef...
متن کاملThermally responsive fluid behaviors in hydrophobic nanopores.
A fundamental understanding of the thermal effects on nanofluid behaviors is critical for developing and designing innovative thermally responsive nanodevices. Using molecular dynamics (MD) simulation and experiment, we investigate the temperature-dependent intrusion/adsorption of water molecules into hydrophobic nanopores (carbon nanotubes and nanoporous carbon) and the underlying mechanisms. ...
متن کاملMolecular simulation studies of hydrophobic gating in nanopores and ion channels.
Gating in channels and nanopores plays a key role in regulating flow of ions across membranes. Molecular simulations provide a 'computational microscope' which enables us to examine the physical nature of gating mechanisms at the level of the single channel molecule. Water enclosed within the confines of a nanoscale pore may exhibit unexpected behaviour. In particular, if the molecular surfaces...
متن کاملExperimental study on energy dissipation of electrolytes in nanopores.
When a nonwetting fluid is forced to infiltrate a hydrophobic nanoporous solid, the external mechanical work is partially dissipated into thermal energy and partially converted to the liquid-solid interface energy to increase its enthalpy, resulting in a system with a superior energy absorption performance. To clarify the energy dissipation and conversion mechanisms, experimental infiltration a...
متن کاملEffects of the addition of electrolyte on liquid infiltration in a hydrophobic nanoporous silica gel.
In this letter, we report the experimental results of pressure induced infiltration in the hydrophobic nanopores of a silica gel. The infiltration pressure increases with the prolonged surface treatment time, whereas the infiltration volume is not dependent on the surface coverage. When temperature increases, if the liquid phase is pure water, the infiltration pressure would decrease, which is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 11 30 شماره
صفحات -
تاریخ انتشار 2009